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Abstract. The magnetic moment of an electron gas on the surface of constant negative curvature is in-
vestigated. It is shown that the surface curvature leads to the appearance of the region of the monotonic
dependence M(B) at low magnetic fields. At high magnetic fields, the dependence of the magnetic moment
on a magnetic field is the oscillating one. The effect of the surface curvature is to increase the region of the
monotonic dependence of the magnetic moment and to break the periodicity of oscillations of the magnetic
moment as a function of an inverse magnetic field.

PACS. 73.20.At Surface states, band structure, electron density of states – 75.75.+a Magnetic properties
of nanostructures

1 Introduction

The two-dimensional electron gas (2DEG) in quantized
magnetic fields has attracted a lot of attention in recent
years. The increasing interest to the 2DEG is due to its
unique properties: periodic oscillations of the magnetic
moment as a function of an inverse magnetic field (the
de Haas-van Alphen effect), oscillations of the longitu-
dinal magnetoresistance (the Shubnikov-de Haas effect),
and quantization of the Hall conductivity (the integer and
fractional quantum Hall effects). Transport and magnetic
measurements are powerful methods for studying the elec-
tron energy spectrum. Note that transport measurements
yield information about the localized states near the Fermi
energy, but provide very little direct information about the
total density of states of the 2DEG. In contrast, measure-
ments of magnetization are a powerful tool for exploring
the total density of states of a degenerate Fermi gas. Re-
cent advances in magnetometry provide new insights into
the electron density of states of the 2DEG [1].

The theory of the two-dimensional de Haas-van Alphen
effect was started by Peierls [2]. In the zero-temperat-
ure limit he obtained that the magnetization in the ideal
2DEG has sharp, saw-tooth oscillations with a constant
amplitude. Recent theoretical investigations show that in
the two-dimensional case the dependence of the oscilla-
tion amplitude on a magnetic field and temperature differs
from the Lifshitz-Kosevich formula for bulk conductors [3],
and this is confirmed by experiments [1].
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The various physical properties of electrons on curved
surfaces have attracted an increasing interest in recent
years. The substantial progress in nanotechnology has
made it possible to produce curved 2D layers of desired
shapes [4–6]. Experiments on the quantum Hall effect in
curved 2DEG’s [4,6] show that such mesoscopic structures
can eventually be used for novel electronic devices. Besides
the interesting transport properties, electrons on various
curved surfaces also have unusual properties of the mag-
netic moment as a function of a magnetic field, tempera-
ture, and geometric parameters [7–11].

In this paper we study the magnetic moment of elec-
trons on the surface of constant negative curvature (the
Lobachevsky plane). Note that the two-dimensional sur-
faces of constant negative curvature are widely used in
physics. These structures are studied by string theorists
for calculating multiloop amplitudes in string perturba-
tion theory [12]. The other topic of interest is quantum
chaos. It is well known by now that geodesic motion on
a large class of such surfaces is ergodic and even strongly
chaotic [13,14]. The quantum scattering of a particle on
a two-dimensional surface of constant negative curva-
ture has generated considerable interest over the past few
years [15]. In recent years, the quantum Hall effect on the
Lobachevsky plane is a subject of current interest [16–20].

2 Electron states and magnetic moment

We consider noninteracting electrons confined to the sur-
face of constant negative curvature (the Lobachevsky
plane) in a magnetic field �B. We choose the Landau
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gauge for the vector potential ( �A = (Ba2y−1, 0)) and em-
ploy the Poincaré realization in which the Lobachevsky
plane L is identified with the upper complex halfplane
L = {z = x + iy ∈ C : y > 0} endowed with the metric

ds2 =
a2

y2
(dx2 + dy2),

where a is the radius of curvature. The Hamiltonian of the
system can be written as [20]

H =
�2

2m∗a2

[
−y2

(
∂2

x + ∂2
y

)
+ 2iby∂x + b2 − 1

4

]
, (1)

where m∗ is the effective electron mass, b = eBa2/�c,
and the last term in equation (1) is the surface potential
which arises from the surface curvature [21]. The spectrum
of H consists of two parts [22]: a discrete spectrum in the
interval (0, �2b2/2m∗a2) consisting of a finite number of
Landau levels

En = �ωc

(
n +

1
2

)
− �2

2m∗a2

(
n +

1
2

)2

, 0 ≤ n < |b| − 1
2

(2)
and a continuous spectrum in the interval
[�2b2/2m∗a2,∞)

E(ν) =
�2

2m∗a2

(
b2 + ν2

)
, 0 ≤ ν < ∞.

The electron density of states n(E) per unit area is
defined by the following expression:

n(E) =
1

πS

∫
ImG(�r, �r; E + i0)d�r,

where S is the area of the surface and G(�r, �r′; E) is the
Green’s function of the Hamiltonian. The density of states
of electrons on the Lobachevsky plane is given by [20]

n(E) =
1

2πa2

∑
0≤n<|b|−1/2

(
|b| − n − 1

2

)
δ(E − En)

+
m∗

2π�2
Θ

(
E − �2b2

2m∗a2

)

× sinh 2π
√

2m∗a2E/�2 − b2

cosh 2π
√

2m∗a2E/�2 − b2 + cos 2πb
, (3)

where Θ(x) is the Heaviside step function. The first term
in equation (3) corresponds to the discrete spectrum and
the second term corresponds to the continuous one and
coincides with the expression given in reference [22].

The magnetic moment of a thermodynamic system
with a fixed chemical potential is given by

�M = −
(

∂Ω

∂ �B

)∣∣∣∣
T,S,µ

, (4)

where

Ω(T, µ) = −TS

∫ ∞

−∞
n(E) ln {1 + exp [(µ − E) /T ]} dE

(5)
is the thermodynamic potential.

First, we consider the case of zero temperature. We
substitute the formula for the electron density of states
(Eq. (3)) into equation (5) and apply the Poisson sum-
mation formula for the magnetic moment. When both the
discrete spectrum and the continuous one are below the
Fermi energy, i.e., when εF ≥ b2 (εF = 2m∗a2EF /�2), the
magnetic moment of a 2DEG on the Lobachevsky plane
is given by

M(T = 0)
µB

∣∣∣∣
εF ≥b2

=
me

m∗
S

2πa2

{
− b

6

− 3
2π3

∞∑
k=1

(−1)k

k3
exp[−2πk

√
εF − b2] sin 2πkb

+
2
π

√
εF − b2

∞∑
k=1

(−1)k

k
exp[−2πk

√
εF − b2]

×
(
b cos 2πkb −

√
εF − b2 sin 2πkb

)

+
1
π2

∞∑
k=1

(−1)k

k2
exp[−2πk

√
εF − b2]

×
(
b cos 2πkb − 3

√
εF − b2 sin 2πkb

)}
.

(6)

As can be seen from equation (6), in the region εF ≥ b2,
M(B) is the monotonic dependence, since the exponents
in the sums are negligible.

For εF < b2 (in this case only the discrete spectrum is
below the Fermi energy), the magnetic moment is given by

M(T = 0)
µB

∣∣∣∣
εF <b2

=
me

m∗
S

2πa2

{
− b

6
− 3

2π3

∞∑
k=1

(−1)k

k3

× sin 2πk(b −
√

b2 − εF ) +
1
π2

(b − 3
√

b2 − εF )

×
∞∑

k=1

(−1)k

k2
cos 2πk(b −

√
b2 − εF )

− 2
π

√
b2 − εF (b −

√
b2 − εF )

×
∞∑

k=1

(−1)k

k
sin 2πk(b −

√
b2 − εF )

}
.

(7)

As can be seen from equation (7), the dependence M(B)
has the monotonic part, which is a linear function of a
magnetic field, and the three sums lead to saw-tooth os-
cillations.

In Figure 1 we show the dependence M(B). The dotted
and dot-dashed lines show the envelope of maxima and
minima of the magnetic moment respectively.
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Fig. 1. The magnetic moment of a 2DEG on the Lobachevsky
plane as a function of a magnetic field; a = 10−5 cm, S =
3 × 10−9 cm2, EF = 2 × 10−13 erg.

The monotonic dependence M(B) corresponds to the
case when both the discrete spectrum and the continuous
one are below the Fermi energy. The bottom of the con-
tinuous spectrum crosses the Fermi level with increasing
a magnetic field, therefore, there is only the discrete spec-
trum below the Fermi energy. In this case, the monotonic
dependence of the magnetic moment on a magnetic field
is replaced by the oscillating one. As can be seen from
Figure 1, for εF < b2, the monotonic part of the magnetic
moment is much less than the amplitude of saw-tooth os-
cillations. The jumps in the magnetic moment arise from
the crossings of the Fermi level by the electron levels.

Let us consider the monotonic dependence M(B). As
can be seen from equation (6), the exponents in the sums
are negligible for εF � b2. Neglecting these sums, we have
that the dependence of the magnetic moment on a mag-
netic field is almost linear

M(T = 0)
µB

∣∣∣∣
εF �b2

� me

m∗
S

2πa2

(
− b

6

)
. (8)

Now consider the magnetic moment oscillations in the
region εF < b2. From equation (7) it is easy to find the
envelope of the maxima and minima of the magnetic mo-
ment

M±

µB
=

me

m∗
S

2πa2

√
b2 − εF

(
±b − 1

2
∓

√
b2 − εF

)
,

where M+ and M− are the envelopes of the maxima and
minima of the magnetic moment respectively. The differ-
ence between them is the oscillation amplitude:

∆M

µB
=

M+ − M−

µB
=

2
me

m∗
S

2πa2

√
b2 − εF

(
b −

√
b2 − εF

)
.

As can be seen from this equation, the surface curvature
decreases the amplitude of oscillations of the magnetic mo-
ment. The oscillation amplitude tends to EF 2meS/π�2

with a magnetic field. As shown in Figure 1, oscillations
of the magnetic moment as a function of a magnetic field
are not periodic. It is easy to find the distance between
two neighboring jumps in units of 1/B:

∆

(
1
B

)
=

|e|a2

�c

2
√

b2 − εF − 1
b
(
b2 + 2b + 1 − 2(b + 1)

√
b2 − εF

) .

As can be seen form this equation, the oscillations of the
magnetic moment as a function of an inverse magnetic
field (1/B), in contrast with the case of the flat surface,
are not periodic. Note that in the limit of zero curvature
the distance between two neighboring jumps is given by

∆

(
1
B

)
−→
a→∞

�|e|
m∗cEF

.

From an analytical study of the obtained formulas and
from a numerical analysis we find that the region of the
monotonic dependence of the magnetic moment is increas-
ing, the amplitude and the distance between neighboring
jumps of the magnetic moment as a function of a magnetic
field are decreasing with increasing surface curvature.

Let us now consider the effect of temperature on the
magnetic moment of a 2DEG on the Lobachevsky plane.
Substituting equation (3) into equation (5), we get M =
M1 + M2, where

M1

µB
=−me

m∗
S

2πa2




∑
0≤n<b−1/2

(
b−n− 1

2

)
(2n+1)f0(En)

−2m∗a2T

�2

∑
0≤n<b−1/2

ln {1 + exp[(µ − En)/T ]}



is the contribution of the discrete spectrum,

M2

µB
= −me

m∗
S

2πa2

{
b

∫ ∞

0

dt
sinh 2π

√
t

cosh 2π
√

t + cos 2πb

× f0

(
�2

2m∗a2
(t + b2)

)

− 2m∗a2T

�2
π sin 2πb

∫ ∞

0

dt
sinh 2π

√
t

(cosh 2π
√

t + cos 2πb)2

× ln
{

1 + exp
[(

µ − �2

2m∗a2
(t + b2)

)
/T

]}}

is the contribution of the continuous spectrum to the mag-
netic moment. The numerical study shows that tempera-
ture results in smearing of the oscillations maxima and
decreasing the oscillation amplitude. The monotonic part
of the magnetic moment is nearly independent of temper-
ature.

3 Conclusions

The magnetic moment of a 2DEG on the surface of con-
stant negative curvature is investigated. It is shown that
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when both the discrete spectrum and the continuous one
are below the Fermi energy, the dependence of the mag-
netic moment on a magnetic field is the monotonic one.
The bottom of the continuous spectrum crosses the Fermi
level with increasing a magnetic field. In this case, the
monotonic dependence of the magnetic moment on a mag-
netic field is replaced by the oscillating one. The effect
of the surface curvature is to increase the region of the
monotonic dependence of the magnetic moment and to
decrease the amplitude and the distance between neigh-
boring jumps of the magnetic moment as a function of a
magnetic field.
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